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Cut-Off Space of Cloverleaf Resonators with Electric
and Magnetic Walls

J. Helszajn, Fellow, IEEE, and David J. Lynch

Abstract—A planar resonator that has the symmetry of a
junction circulator is the cloverleaf one. The purpose of this
paper is to describe the isotropic cut-off space of this class of
resonator using the finite element approach. Circuits with 3 and
4-fold symmetries and with a magnetic or an electric sidewall
are separately dealt with. Standing-wave solutiens are included
for completeness. The gyromagnetic problem is separately in-
vestigated.

INTRODUCTION

N IMPORTANT class of microwave circuits is the
planar one [1], [2]. Such circuits include disk, tri-
angular, wye, ring and irregular hexagonal resonators. A
number of different mathematical methods such as the
Greens Function approach [3], [4], the Spectral Domain
approach [5], the Finite Element method [6]-[8], the
Transverse Resonance method [9] and the Contour-Inte-
gral method [2, 10] have been utilized to analyze these
various circuits. A related class of problem is the cut-off
space of waveguides with irregular cross sections [8],
[11]. One structure that has not been described so far is
the cloverleaf one with 3-fold symmetry. This topology
may be of value in the design of 3-port junction circula-
tors and other circuits. The schematic diagram of this ar-
rangement is indicated in Fig. 1. The paper includes the
description of the isotropic cut-off space and the field pat-
terns of cloverleaf circuits with 3 and 4-fold symmetries
using the finite element method. It also includes the split-
ting of the dominant pair of degenerate modes in the gy-
romagnetic circuit with 3-fold symmetry and the standing
wave solution of a 3-port circulator based on this type of
topology. Papers on the finite element method are given
in [11]-[18], papers on planar isotropic circuits in [19]-
[23], work on gyromagnetic ones in [7]-[9], [24] and cal-
culations on n-port planar circuits in [2], [16]-[18], [25].
It is of note that while the dominant pair of degenerate
counter-rotating modes in such a gyromagnetic circuit
with magnetic sidewalls coincides with two of the cigen-
networks entering in the description of a junction circu-
lator using this type of resonator the dominant in-phase
mode coincides with the same circuit using an electric
sidewall. Since the first circulation adjustment of this type
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Fig. 1. Topology of cloverleaf planar resonator with 3-fold symmetry.

of circuit relies on a degeneracy between these two dif-
ferent boundary value problems the cut-off space and field
patterns of the planar cloverleaf resonator with electric
sidewalls is included in this work for completeness.

THE FINITE ELEMENT METHOD

The cloverleaf circuits investigated in this paper are not
compatible with closed form formulations, so that some
sort of numerical method is required. A popular approach
to this kind of circuit is the finite element one and this is
the method employed in this paper.

The mathematical formulation of the finite element
method relies on the construction of an energy functional
which is then minimized to form a matrix eigenvalue
problem. For gyromagnetic circuits with magnetic, elec-
tric or mixed electric and magnetic sidewalls one suitable
functional is [2]

F(E) = H [ V.E|* — kZ|E,J"] ds

s

.KS
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This functional has the magnetic wall boundary condition
included as a natural term. s is the surface of the planar
circuit, { represents the periphery and ¢ is the boundary
tangent defined in a counter-clockwise direction. p and &
are the diagonal and off-diagonal elements of the tensor
permeability. When the parameter « / u is set equal to zero
the functional describes an isotropic resonator. V, is the
transverse differential operator in cartesian coordinates.
The wave number (k,) is defined in the usual way by
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where
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and ¢ is the relative dielectric constant of the ferrite or
dielectric substrate.

The finite element method separately involves subdi-
viding the surface of the planar circuit into a number of
elementary triangles, m. The number of nodes, n, within
each triangle is defined by the degree, ¢, of the approxi-
mation problem as,

_@+ D@+

> @

For degree one and two all such nodes lie on the bound-
ary of the triangle, whereas for degree greater than two
some nodes lie within the triangle.

The finite element solution continues by approximating
the true field solution, E,, within each triangular finite ele-
ment by a trial function expansion of the form [4]

n
Eg=k21ukak, k=1,2,---,n (5)
where o, are a suitable set of real basis functions, and u,
are complex coeflicients.

The number of nodes, p, within the finite element mesh
is not known until the final mesh is assembled since there
is no unique relationship between the number of elements
and the number of nodes. This is due to the fact that each
node is not connected to the same number of triangles.
The number of elements, m, for a specified number of
nodes, p, is also dependant on the degree of approxima-
tion selected. It is therefore possible to have a fine mesh
of lower order elements or a coarse mesh of higher order
ones. The latter of these possibilities has been shown to
be the preferred one [15].

Substitution of the trial function into the energy func-
tional gives the discretized functional as

FU) = U*[4AU (6)

where

4] = {[D] — K2[B] + j}Ki [C]}. )

The required eigenvalue problem is now established by
minimizing the energy functional using the Rayleigh-Ritz
procedure

dF(U) _

0.
du,

For the case of a gyromagnetic resonator with magnetic
sidewalls this becomes,

[A10 = 0

where the matrix of the form [A] is unchanged by the op-
eration. In terms of the original variables the latter equa-
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tion gives,
{[D] + jﬁ m}'ﬁ = K2[B]T. ®)

The elements appearing in the matrices [B] and [D] are
defined in [13] and those in the matrix [C] in [4] as

BU= SSai' (x]ds (93)
= S % 9
Dy = Sg (Vi) - (Vi) ds 9¢c)

$

where,

i=1,2,3---p

j=1,2,3"p.

Once the basis functions have been selected the general
matrix eigenvalue problem may be solved for the p eigen-
values k> and p eigenvectors U. The eigenvalues are the
normalized cut-off frequencies of the resonator and the
eigenvectors are discrete values of the approximated field
at the finite element nodes. U is a column matrix whose
dimension is equal to the number of nodes in the finite
element mesh,

CuT-OrF SPACE OF ISOTROPIC CLOVERLEAF
RESONATOR WITH 3-FOLD SYMMETRY

The cloverleaf circuit discussed in this paper may be
described by two radii. Fig. 2 depicts the coordinate sys-
tem employed here as well as three typical geometries.
The minimum outside radius is related to the inside one
by

R
R,(min) = > R (10)

The relationship between the details of the circuit and
the cut-off wave numbers for the dominant and a number
of higher order modes for a resonator with magnetic walls
is illustrated in Fig. 3. The finite element mesh utilized
in the solution of this circuit is illustrated in Fig. 4. For
this arrangement the independent mesh variables are given
by

qg=2
m = 57
and the dependent one by
n=6.
The number of nodes before assembly is
m X n = 342
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Fig. 2. (a) Co-ordinate system used in description of cloverleaf resonator
with 3-fold symmetry. (b) Topology of cloverleaf resonator with minimum
surface area (R,/R,) = 0.86. (c) Topology of cloverleaf resonator with
(R,/R) = 1.0. (d) Topology of cloverleaf resonator with (R,/R,) = 3.0.
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Fig. 3. Cut-off space of cloverleaf planar resonator with 3-fold symmetry
with magnetic sidewalls.

and after merging coincident nodes reduces to
p = 160.

The cut-off numbers of the first four modes in this type
* of resonator for the condition in (10) are given by

R.
kR, +R) =159, R, = «/53’
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Fig. 4. Finite element mesh for cloverleaf planar resonator with 3-fold

symmetry.
R;
k, (R, + R) = 3.88, R, = J§-2—
R,
k,(R, + R) = 4.05, R, = \/55
R
k,R, + R;) = 4.24, R, = «/35

One possible notation for this type of circuit may be
established by recognizing that as R, /R, increases its cut-
off space is asymptotic to that of a circular disk resonator.
If this convention is adopted then the modes of the clo-
verleaf resonator may be referred to as limit TM,,,, modes
of the disk resonator. In this nomenclature m refers to the
number of half cycles of the magnetic field along the azi-
muthal direction and n refers to the number of half.cycles
along the radius of the circuit, o indicates that there is no
variations of the fields along the axis.

One feature of the cloverleaf resonator is the possibility
of coupling to it either at the intersection of the lobes em-
ployed to define its geometry or at the extremities of them.
The former possibility affords some degree at miniatur-
ization in the layout of microwave circuits such as junc-
tion circulators. Fig. 5 indicates the relationship between
the aspect ratio of the resonator and the ratio of the radii
for the two coupling pairs of terminals. The choice of any
coupling port is of course related to the external Q factor
of the circuit. This problem is however outside the remit
of this work.

Cut-OFF SPACE OF IsoTropric CLOVERLEAF
RESONATOR WITH 4-FoLD SYMMETRY

A cloverleaf resonator with 4-fold symmetry with mag-
netic and electric sidewalls may also be visualized with-
out difficulty. Fig. 6 illustrates its topology. Fig. 7 de-
picts its construction and three typical geometries. This
geometry is defined by variables R, and A. The minimum
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Fig. 5. Relationship between aspect ratio of cloverleaf resonator with
3-fold symmetry and the ratio of the possible coupling port radii.
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Fig. 6. Topology of cloverleaf planar resonator with 4-fold symmetry.
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Fig. 7. (a) Co-ordinate system use in description of cloverleaf resonator-
with 4-fold symmetry. (b) Topology of cloverleaf resonator with minimum
surface area (R,/A) = 0.5.. (c) Topology of cloverleaf resonator with
(R,/A4) = 0.75. (d) Topology of cloverleaf resonator with (R,/A) = 2.5.

1623

Fig. 8. Finite element mesh for cloverleaf planar resonator with 4-fold
symmetry.

outside radius for this circuit is

4 '
R,(min) = 3 (11)
The finite element mesh used in the analysis of this res-
onator is indicated in Fig. 8. This mesh is described by

qg=2
m= 76
n==56
m X n =456
p =213

The cut-off numbers of this type of circuit bounded by a
perfect magnetic wall are indicated in Fig. 9. The mode
nomenclature in this instance may also be deduced by re-
ferring to a simple disk resonator. A notable feature of
this circuit is that as the ratio R,/A decreases from the
disk resonator limit, the degenerate n = 2 modes are split
by the geometry. . v :

The cut-off numbers of the first 4-modes in this reso-
nator, for the condition in (11) are given by

k, <Ro %) =176, R, =’E‘
k, <Ro + %) =218 R, =%
ke <Ro + —%) =4.03, R, = ‘54
ke(Ro + %) — 452, R, = i;-
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Fig. 9. Cut-off space of cloverleaf planar resonator with 4-fold symmetry
with magnetic sidewall.

FIELD PATTERNS

The equipotential lines for the first four modes in an
isotropic cloverleaf resonator with 3-fold symmetry are
indicated in Figs. 10 thru 13 for three different aspect ra-
tios. The symmetric (n = O limit) mode, illustrated in
Fig. 10, has the property that it has a magnetic wall on
both the axis and on the open side wall of the planar res-
onator. The fundamental (n = 1 limit) mode is indicated
in Fig. 11. Its field pattern, unlike the symmetric mode,
displays and electric wall on the axis of the circuit. As
the ratio R, /R; approaches its lower bound its field pattern
reduces to that of the fundamental mode in a symmetric
wye resonator with 3-fold symmetry [6]. The first two
higher order (n = 2 and » = 3 limit) modes encountered
in this type of resonator are separately indicated in Figs.
12 and 13. The equipotential lines of both these modes
also exhibit an electric wall along the axis of the resona-
tor.

The electric field distribution for the first three modes
in a cloverleaf resonator with 4-fold symmetry are de-
picted in Figs. 14-17, again for three typical geometries.
The symmetric n = O limit mode in this sort of circuit
once more displays a magnetic wall at the center of the
resonator whereas the # = 1 and n = 2 limit modes have
an electric wall there. The dominant mode in this circuit
reduces to that of the fundamental mode in a planar X
resonator as the ratio R, /A4 decreases to its lower bound
[6]. Scrutiny of the field patterns for the # = 2 limit modes
indicates one possible explanation for the splitting at these
modes due to the geometry. Fig. 16 shows the lower of
the two modes where it is observed that the resonator cut-
in in this instance is coincident with an electric wall and
will therefore have little effect on the resonant frequency
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Fig. 10. Equipotential lines of cloverleaf resonator with 3-fold symmetry,
for n = 0 limit disk mode ([R,/R;] = 0.86. 1.0, 5.0).

of the mode. For the upper of the two degenerate modes,
illustrated in Fig. 17 no such phenomenon exists.

SpLiT CuT-OFF SPACE OF GYROMAGNETIC
CrLovErLEAF REsonaTor wrtH 3-FoLp SYMMETRY

The split mode chart of a gyromagnetic cloverleaf res-
onator is also of some interest. Fig. 18 depicts the rela-
tionship between the splitting of the dominant pair of de-
generate modes and the aspect ratio of the resonator for
six different values of « /u. It is obtained by retaining the
gyrotropy term in the functional described in (1).

Scrutiny of this result indicates that the gyromagnetic
effect in this type of resonator depends upon both the as-
pect ratio and the gyrotropy and that there exists a number
of different combinations of these variables for a given
gyromagnetic effect. Another feature of this result is that
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Equipotential lines of cloverleaf resonator with 3-fold symmetry,
for n = 1 limit disk mode ([R,/R,] = 0.86, 1.0, 5.0).

Fig. 12. Equipotential lines of cloverleaf resonator with 3-fold symmetry,
for n = 2 limit disk mode ([R,/R,] = 0.86, 1.0. 5.0).

Fig. 13. Equipotential lines of cloverleaf resonator with 3-fold symmetry,
for n = 3 limit disk mode ([R,/R,] = 0.86, 1.0, 5.0).

the splitting between the dominant pair of split modes in
a weakly magnetized cloverleaf resonator is proportional,
in the usual way, to the gyrotropy of the material. It also
indicates that the angle between the degenerate split radial
wavenumbers of this type of resonator approaches that of
a simple disk resonator.

(keR;;—r(keR)‘_ m [k
k. R) " kRP — n? <_> (12

It is of separate note that the gyrotropy in this type of
resonator is related to the quality factor for a junction cir-
culator using planar resonators by,

1 Ak,R
£ ()
QL keR
Values of @; between 2 and 23 are suitable for the design

of quarter-wave coupled devices with modest specifica-
tions. This suggests that the normalized split wavenum-

(13)
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Fig. 14. Equipotential lines of cloverleaf resonator with 4-fold symmetry,
for n = 0 limit disk mode ([R,/R,] = 0.5, 0.75, 8.0).

Fig. 15. Equipotential lines of cloverleaf resonator with 4-fold symmetry,
for n = 1 limit disk mode ([R,/R,] = 0.5, 0.75, 8.0).

Fig. 16. Equipotential lines of cloverleaf resonator with 4-fold symmetry,
for n = 2 limit disk (lower) mode ([R,/R,] = 0.5, 0.75, 8.0).

bers must be bounded by, bers can be accommodated with
Ak, R
0231 < (5222 < 0.288. 0.40 = = < 0.60.
k.R "
One attractive feature of the cloverleaf resonator is the Once the quality factor of this type of device is estab-

possibility of coupling to it at the terminals defined by the lished a knowledge of its susceptance slope parameter is
intersection of the lobes used in its construction. Adopt- sufficient for design. This quantity is defined by the res-
ing a value of (R,/R;) = 1.0, for instance, indicates that onator shape, its thickness and the choice of coupling ter-
the interval defined by the normalized split cut-off num- minals.



HELSZAJN AND LYNCH: CUT-OFF SPACE OF CLOVERLEAF RESONATORS 1627

Fig. 17. Equipotential lines of cloverleaf resonatér with 4-fold symmetry,
for n = 2 limit disk (upper) mode ([R,/R,] = 0.5, 0.75, 8.0).
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Fig. 18. Split radial wavenumbers of weakly magnetized gyromagnetic
cloverleaf resonator.

STANDING WAVE SOLUTION OF CIRCULATORS USING
CLOVERLEAF RESONATORS

The standing wave solution of a planar junction circu-
lator using this type of resonator is also of some interest.
It may be obtained by taking a suitable linear combination
of the modes of the isotropic circuit [6]. Fig. 19 shows
the construction of such a solution for the dominant mode
in a gyromagnetic cloverleaf resonator with 3-fold sym-
metry. An ideal circulator may be formed with this type
of circuit with ports attached to either two possible triplets
of terminals.

EIGENVALUES AND EIGENVECTORS OF CLOVERLEAF
RESONATORS WITH ELECTRIC WALLS

The finite element approach also lends itself to the de-
scription of planar cloverleaf resonators with electric
sidewalls. The solution to this problem may be obtained

by partitioning the nodal field vectors according to
whether the electric field exists or not on the boundary.
The discretized functional may then be rewritten as

A A —

[4g] | [4p] <U,>
_ (14)
UP

[Apf ] | [App]
where Up is a column vector containing the forced values
of electric field on the electric walls. Since these are zero
the problem reduces to that met in connection with (6)

F(U) = U} [441U; (15)
where flf is a column matrix containing the unconstrained
values of axial electric field and is the unknown of the
problem. Applying the Rayleigh-Ritz condition,

dF(U) _

a[U;];
reduces the problem once more to the standard form be-
low

F@U) = [UfTx]

{[fo] i [cﬁ]}uf = K21B;10.  (16)

The eigenvalues of this equation, as before, are the cut-
off wavenumbers k2 and the eigenvectors are the column
matrices Uj.

The relationship between the geometry of the circuit
and the cut-off wave number for an isotropic cloverleaf
resonator with three-fold symmetry and an electric side-
wall is illustrated in Fig. 20. Once again as R,/R; in-
creases its cut-off space is asymptotic to that of the cor-
responding planar disk resonator.

FIELD PATTERNS OF CLOVERLEAF RESONATORS WITH
ELECTRIC WALLS

The equipotential lines for a cloverleaf resonator with
3-fold symmetry and bounded by an electric wall are il-
lustrated in Fig. 21 for the first three modes. The domi-
nant mode of this circuit, depicted in Fig. 21(a), exhibits
a magnetic wall on the axis and an electric wall at the
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Fig. 19. Standing wave circulation solution of circulator using dominant mode in cloverleaf resonator with 3-fold symmetry
([R,/R] = 1.0).

ke(Ro+Ri)

1 1 1 I J. I 1 I 1 1 L i 1 L A I J

081216 2024 28 3.2 3.6 4.0

Ro/ Ri

Fig. 20. Cut-off space of cloverleaf planar resonator with 3-fold symmetry
with Electric Sidewalls.

(@ (b) ©

Fig. 21. (a) Equipotential lines of cloverleaf resonator with electric sidewall for dominant mode ([R, /R.] = 1.0). (b) Equi-
potential lines of cloverleaf resonator with electric sidewall for first higher order mode (IR, /R.] = 1.0). (c) Equipotential lines
of cloverleaf resonator with electric sidewall for second higher order mode ([R,/R,] = 1.0).

boundary of the circuit. The first two higher order modes  wall on both the axis and the sidewall of the resonator.
of this type of circuit are indicated in Fig. 21(b) and (¢). The latter exhibits a magnetic wall at the center and an
The first of these has the property that it has an electric  electric wall approximately midway between the central
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axis and the perimeter of each of the circles used in the
construction of the circuit.

CONCLUSIONS

The finite element method has been employed in this
paper to investigate the properties of cloverleaf circuits
with 3 and 4-fold symmetries and with electric and mag-
netic walls. The cut-off space of a cloverleaf gyromag-
netic circuit with 3-fold symmetry has been separately
evaluated. It indicates that there exists a number of dif-
ferent combinations of the aspect ratio of the resonator
and its gyrotropy for a given gyromagnetic effect which
are in keeping with good engineering practice of this sort
of circuit.
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